Pengertian Penginderaan Jauh

Pengertian Penginderaan Jauh

Penginderaan Jauh adalah Pengambilan atau pengukur an data / informasi mengenai sifat dari sebuah
fenomena, obyek atau benda dengan menggunakan sebuah alat perekam tanpa berhubungan langsung dengan bahan study.


Manfaat Penginderaan Jauh
a.Pembuatan Peta-peta Tematik
b.Analisis Arahan Penataan Lahan Usaha Tambang
c.membantu mencari faktor penyebab banjir, erosi dan tanah longsor dalam wilayah ekosistem Daerah Aliran
Sungai (DAS).
d.Membantu dalam penyediaan data regional dalam penentuan lokasi Stasiun Pengamat Aliran Sungai (SPAS) untuk pemantauan banjir, sedimen, dan sampah, karena kemampuannya untuk menggambarkan kondisi karakter ekosistem DAS secara digital.
e.Memetakan dan membuat tampilan menarik daerah rawan banjir dan kekeringan, gejala erosi, dan tanah longsor.
f. Monitoring perubahan lahan
g. Monitoring erosi tebing sungai
h. Memetakan pola pembangunan perumahan dan sebaran spasialnya


Berbagai Pemanfaatan Penginderaan Jauh
Penginderaan jauh bermanfaat dalam berbagai bidang kehidupan, khususnya di bidang kelautan, hidrologi,
klimatologi, lingkungan dan kedirgantaraan.
1. Manfaat di bidang kelautan (Seasat, MOSS)
• Pengamatan sifat fisis air laut.
• Pengamatan pasang surut air laut dan gelombang laut.
• Pemetaan perubahan pantai, abrasi, sedimentasi, dan lain-lain.

2. Manfaat di bidang hydrologi (Landsat, SPOT)
• Pengamatan DAS.
• Pengamatan luas daerah dan intensitas banjir.
• Pemetaan pola aliran sungai.
• Studi sedimentasi sungai.
• Dan lain-lain.

3. Manfaat di bidang klimatologi (NOAA, Meteor dan GMS)
• Pengamatan iklim suatu daerah.
• Analisis cuaca.
• Pemetaan iklim dan perubahannya.
• Dan lain-lain.

4. Manfaat dalam bidang sumber daya bumi dan lingkungan (landsat, Soyuz,SPOT)
• Pemetaan penggunaan lahan.
• Mengumpulkan data kerusakan lingkungan karena berbagai sebab.
• Mendeteksi lahan kritis.
• Pemantauan distribusi sumber daya alam.
• Pemetaan untuk keperluan HANKAMNAS.
• Perencanaan pembangunan wilayah.
• Dan lain-lain.

5. Manfaat di bidang angkasa luar (Ranger, Viking, Luna, Venera)
• Penelitian tentang planet-planet (Jupiter, Mars, dan lain-lain).
• Pengamatan benda-benda angkasa.
• Dan lain-lain.


Teknologi Penginderaan Jauh
Sebuah platform PJ dirancang sesuai dengan beberapa tujuan khusus. Tipe sensor dan kemampuannya,
platform, penerima data, pengiriman dan pemrosesan harus dipilih dan dirancang sesuai dengan tujuan tersebut dan beberapa faktor lain seperti biaya, waktu dsb.

1.Resolusi sensor
Rancangan dan penempatan sebuah sensor terutama ditentukan oleh karakteristik khusus dari target yang
ingin dipelajari dan informasi yang diinginkan dari target tersebut. Setiap aplikasi PJ mempunyai kebutuhan
khusus mengenai luas cak upan area, frekuensi pengukuran dan tipe energi yang akan dideteksi. Oleh karena itu, sebuah sensor harus mampu memberikan resolusi spasial, spec tral dan temporal yang sesuai dengan kebutuhan aplikasi.
a)Resolusi spasial menunjukkan level dari detail yang ditangkap oleh sensor. Semakin detail sebuah study semakin tinggi resolusi spasial yang diperlukan. Sebagai ilustrasi, pemetaan penggunaan lahan memerlukan.
b)resolusi spasial lebih tinggi daripada sistem pengamatan cuaca berskala besar.
c)Resolusi spektral menunjukkan lebar kisaran dari masing-masing band spektral yang diukur oleh sensor. Untuk mendeteksi kerusakan tanaman dibutuhkan sensor dengan kisar an band yang sempit pada bagian merah.
d) Resolusi temporal menunjukkan interval waktu antar pengukuran. Untuk memonitor perkembangan badai, diperlukan pengukuran setiap beberapa menit. Produksi tanaman membutuhkan pengukuran setiap musim,sedangkan pemetaan geologi hanya membutuhkan sekali pengukuran. (Hasyim, B.1995).

2. Platform
a)Ground-Based Platforms: sensor diletakkan di atas permukaan bumi dan tidak berpindah-pindah. Sensornya biasanya sudah baku seperti pengukur suhu, angin, pH air, intensitas gempa dll. Biasanya sensor ini diletakkan diatas bangunan tinggi seperti menara.
b)Aerial platforms: biasanya diletakkan pada sayap pesawat terbang, meskipun platform airborne lain seperti balon udara, helikopter dan roket juga bisa digunakan. Digunakan untuk mengumpulkan citra yang sangat detail dari permukaan bumi dan hanya ditargetkan ke lokasi tertentu. Dimulai sejak awal 1900-an.
c)Satellite Platforms: sejak awal 1960 an sensor mulai diletakkan pada satelit yang diposisikan pada orbit bumi dan teknologinya berkembang pesat sampai sekarang. Banyak studi y ang dulunya tidak mungkin menjadi mungkin.( Hasyim, B. 1995)


Sistem Penginderaan Jauh
Penginderaan jauh dengan menggunakan tenaga matahari dinamakan penginderaan jauh sistem pasif.
Penginderaan jauh sistem pasif menggunakan pancaran cahaya, hanya dapat beroperasi pada siang hari saat cuaca cerah. Penginderaan jauh sistem pasif yang menggunakan tenaga pancaran tenaga thermal, dapat beroperasi pada siang maupun malam hari. Citra mudah pengenalannya pada saat perbedaan suhu antara tiap objek cukup besar. Kelemahan penginderaan jauh sistem ini adalah resolusi spasialnya semakin kasar karena panjang gelombangnya semakin besar. Penginderaan jauh dengan menggunakan sumber tenaga buatan disebut penginderaan jauh sistem aktif.
Penginderaan sistem aktif sengaja dibuat dan dipancarkan dari sensor yang kemudian dipantulkan kembali ke
sensor tersebut untuk direkam. Pada umumnya sistem ini menggunakan gelombang mikro, tapi dapat juga
menggunakan spektrum tampak, dengan sumber tenaga buatan berupa laser.
Penginderaan jauh yang menggunakan Matahari sebagai tenaga alamiah disebut penginderaan jauh sistem pasif, sedangkan yang menggunakan sumber tenaga lain (buatan) disebut penginderaan jauh sistem aktif. Tenaga elektromagnetik pada penginderaan jauh sistem pasif dan sistem aktif untuk sampai di alat sensor dipengaruhi oleh atmosfer. Atmosfer mempengaruhi tenaga elektromagnetik yaitu bersifat selektif terhadap panjang gelombang, karena itu timbul istilah Jendela atmosfer yaitu bagian spectrum elektromagnetik yang dapat mencapai bumi.


Analisis Citra
Data citra satelit dikirim ke stasiun penerima dalam bentuk format digital mentah merupakan sekumpulan data numerik. Unit terkecil dari data digital adalah bit, yaitu angka biner, 0 atau 1. Kumpulan dari data sejumlah 8 bit data adalah sebuah unit data yang disebut byte, dengan nilai dari 0 – 255. Dalam hal citra digital nilai level energi dituliskan dalam satuan byte. Kumpulan byte ini dengan struktur tertentu bisa dibaca oleh software dan disebut citra digital 8-bit.


Citra Foto
Citra foto adalah gambaran yang dihasilkan dengan menggunakan sensor kamera.Citra foto dapat dibedakan
berdasarkan:

a. Spektrum Elektromagnetik yang digunakan
Berdasarkan spektrum elektromagnetik yang digunakan, citra foto dapat dibedakan atas:
1) Foto ultra violet yaitu foto yang dibuat dengan menggunakan spektrum ultra violet dekat dengan panjang
gelombang 0,29 mikrometer.
2) Foto ortokromatik yaitu foto yang dibuat dengan menggunakan spectrum tampak dari saluran biru hingga
sebagian hijau (0,4 - 0,56 mikrometer).
3) Foto pankromatik yaitu foto yang dengan menggunakan spektrum tampak mata.
4) Foto infra merah yang terdiri dari foto warna asli (true infrared photo) yang dibuat dengan menggunakan
spektrum infra merah dekat sampai panjang gelombang 0,9 mikrometer hingga 1,2 mikrometer dan infra merah modifikasi (infra merah dekat) dengan sebagian spektrum tampak pada saluran merah dan saluran hijau. Peta berdasarkan foto Foto di sebelah kanan diambil dari pesawat terbang. Tampak sebuah kota kecil di gunung diJepang. Foto ini digunakan untuk membuat peta yang terpampang di bawah. Perhatikan foto itu dan lihat berapa tempat yang dapat kalian kenali di peta. Titik di dalam segitiga kecilkecil itu patok duga, yakni tempat yang ketinggian dan posisinya diketahui dengan tepat. Pada peta, elevasi suatu patok duga, yakni tinggi patok itu dari permukaan laut, dinyatakan dalam meter di sebelahnya. Beberapa digambar sebagai titik tanpa segitiga. Di tengah atas terdapat sebuah kontur dengan bilangan 300 berwarna cokelat. Setiap titik pada kontur itu berelevasi 300 meter.

b. Sumbu kamera
Foto udara dapat dibedakan berdasarkan arah sumbu kamera ke permukaan bumi, yaitu:
1) Foto vertikal atau foto tegak (orto photograph), yaitu foto yang dibuat dengan sumbu kamera tegak lurus
terhadap permukaan bumi.
2) Foto condong atau foto miring (oblique photograph), yaitu foto yang dibuat dengan sumbu kamera menyudut terhadap garis tegak lurus ke permukaan bumi. Sudut ini pada umumnya sebesar 10 derajat atau lebih besar. Tapi apabila sudut condongnya masih berkisar antara 1 - 4 derajat, foto yang dihasilkan masih digolongkan sebagai foto vertikal. Foto condong masih dibedakan lagi menjadi:
a) Foto agak condong (low oblique photograph), yaitu apabila cakrawala tidak tergambar pada foto.
b) Foto sangat condong (high oblique photograph), yaitu apabila pada foto tampak cakrawalanya.

c. Warna yang digunakan
Berdasarkan warna yang digunakan, citra foto dapat dibedakan atas:
1) Foto berwarna semua (false colour).
Warna citra pada foto tidak sama dengan warna aslinya. Misalnya pohonpohon yang berwarna hijau dan banyak memantulkan spketrum infra merah, pada foto tampak berwarna merah.
2) Foto berwarna asli (true colour).
Contoh: foto pankromatik berwarna.
d. Wahana yang digunakan
Berdasarkan wahana yang digunakan, ada 2 (dua) jenis citra, yakni:
1) Foto udara, dibuat dari pesawat udara atau balon (lihat kembali gambar 2.1).
2) Foto satelit/orbital, dibuat dari satelit (lihat gambar 2.4).

2. Citra Non Foto
Citra non foto adalah gambaran yang dihasilkan oleh sensor bukan kamera Citra non foto dibedakan atas:
a. Spektrum elektromagnetik yang digunakan
Berdasarkan spektrum elektromagnetik yang digunakan dalam penginderaan, citra non foto dibedakan atas:
1) Citra infra merah thermal, yaitu citra yang dibuat dengan spektrum infra merah thermal. Penginderaan pada spektrum ini mendasarkan atas beda suhu objek dan daya pancarnya pada citra tercermin dengan beda rona atau beda warnanya.
2) Citra radar dan citra gelombang mikro, yaitu citra yang dibuat dengan spectrum gelombang mikro. Citra radar merupakan hasil penginderaan dengan sistim aktif yaitu dengan sumber tenaga buatan, sedang citra gelombang mikro dihasilkan dengan sistim pasif yaitu dengan menggunakan sumber tenaga alamiah.

b. Sensor yang digunakan
Berdasarkan sensor yang digunakan, citra non foto terdiri dari:
1) Citra tunggal, yakni citra yang dibuat dengan sensor tunggal, yang salurannya lebar.
2) Citra multispektral, yakni citra yang dibuat dengan sensor jamak, tetapi salurannya sempit, yang terdiri dari:
• Citra RBV (Return Beam Vidicon), sensornya berupa kamera yang hasilnya tidak dalam bentuk foto karena detektornya bukan film dan prosesnya non fotografik.
• Citra MSS (Multi Spektral Scanner), sensornya dapat menggunakan spektrum tampak maupun spektrum infra merah thermal. Citra ini dapat dibuat dari pesawat udara.

c. Wahana yang digunakan
Berdasarkan wahana yang digunakan, citra non foto dibagi atas:
1) Citra Dirgantara (Airborne Image), yaitu citra yang dibuat dengan wahana yang beroperasi di udara (dirgantara).
Contoh: Citra infra merah thermal, citra radar dan citra MSS. Citra dirgantara ini jarang digunakan.
2) Citra Satelit (Satellite/Spaceborne Image), yaitu citra yang dibuat dari antariksa atau angkasa luar. Citra ini dibedakan lagi atas penggunaannya, yakni:
a) Citra satelit untuk penginderaan planet. Contoh: Citra satelit Viking (AS), Citra satelit Venera (Rusia).
b) Citra satelit untuk penginderaan cuaca. Contoh: NOAA (AS), Citra Meteor (Rusia).
c) Citra satelit untuk penginderaan sumber daya bumi. Contoh: Citra Landsat (AS), Citra Soyuz (Rusia) dan Citra SPOT (Perancis).
d) Citra satelit untuk penginderaan laut. Contoh: Citra Seasat (AS), Citra MOS (Jepang).
Interpretasi Citra Menurut Este dan Simonett, 1975: Interpretasi citra merupakan perbuatan mengkaji foto udara atau citra dengan maksud untuk mengidentifikasi objek dan menilai arti pentingnya objek tersebut. Jadi di dalam interpretasi citra, penafsir mengkaji citra dan berupaya mengenali objek melalui tahapan kegiatan, yaitu:
• deteksi
• identifikasi
• analisis

Setelah melalui tahapan tersebut, citra dapat diterjemahkan dan digunakan ke dalam berbagai kepentingan seperti dalam: geografi, geologi, lingkungan hidup, dan sebagainya. Pada dasarnya kegiatan interpretasi citra terdiri dari 2 proses, yaitu melalui pengenalan objek melalui proses deteksi dan penilaian atas fungsi objek.

a. Pengenalan objek melalui proses deteksi yaitu pengamatan atas adanya suatu objek, berarti penentuan ada atau tidaknya sesuatu pada citra atau upaya untuk mengetahui benda dan gejala di sekitar kita dengan menggunakan alat pengindera (sensor). Untuk mendeteksi benda dan gejala di sekitar kita, penginderaannya tidak dilakukan secaralangsung atas benda, melainkan dengan mengkaji hasil rekaman dari foto udara atau satelit.

b. Identifikasi.
Ada 3 (tiga) ciri utama benda yang tergambar pada citra berdasarkan ciri yang terekam oleh sensor yaitu sebagai berikut:
• Spektoral
Ciri spektoral ialah ciri yang dihasilkan oleh interaksi antara tenaga elektromagnetik dan benda yang dinyatakan dengan rona dan warna.
• Spatial
Ciri spatial ialah ciri yang terkait dengan ruang yang meliputi bentuk, ukuran, bayangan, pola, tekstur, situs, dan asosiasi.
• Temporal
Ciri temporal ialah ciri yang terkait dengan umur benda atau saat perekaman.

2. Penilaian atas fungsi objek dan kaitan antar objek dengan cara menginterpretasi dan menganalisis citra yang hasilnya berupa klasifikasi yang menuju ke arah teorisasi dan akhirnya dapat ditarik kesimpulan dari penilaian tersebut. Pada tahapan ini, interpretasi dilakukan oleh seorang yang sangat ahli pada bidangnya, karena hasilnya sangat tergantung pada kemampuan penafsir citra.( Tejasukmana,B. 2002)

Unsur Interpretasi Citra
Ada beberapa hal yang perlu diperhatikan dalam mengamati kenampakan objek dalam foto udara, yaitu:
1. Rona dan Warna
Rona atau tone adalah tingkat kecerahan atau kegelapan suatu objek yang terdapat pada foto udara atau
pada citra lainnya. Pada foto hitam putih rona yang ada biasanya adalah hitam, putih atau kelabu. Tingkat
kecerahannya tergantung pada keadaan cuaca saat pengambilan objek, arah datangnya sinar matahari, waktu pengambilan gambar (pagi, siang atau sore) dan sebagainya. Pada foto udara berwarna, rona sangat dipengaruhi oleh spektrum gelombang elektromagnetik yang digunakan, misalnya menggunakan spektrum ultra violet, spektrum tampak, spektrum infra merah dan sebagainya. Perbedaan penggunaan spektrum gelombang tersebut mengakibatkan rona yang berbeda-beda. Selain itu karakter pemantulan objek terhadap spektrum gelombang yang digunakan juga mempengaruhi warna dan rona pada foto udara berwarna.

2. Bentuk
Bentuk-bentuk atau gambar yang terdapat pada foto udara merupakan konfigurasi atau kerangka suatu
objek. Bentuk merupakan ciri yang jelas, sehingga banyak objek yang dapat dikenali hanya berdasarkan bentuknya saja. Contoh:
1) Gedung sekolah pada umumnya berbentuk huruf I, L, U atau empat persegi panjang.
2) Gunung api, biasanya berbentuk kerucut.

3. Ukuran
Ukuran merupakan ciri objek yang antara lain berupa jarak, luas, tinggi lereng dan volume. Ukuran objek
pada citra berupa skala, karena itu dalam memanfaatkan ukuran sebagai interpretasi citra, harus selalu diingat
skalanya. Contoh: Lapangan olah raga sepakbola dicirikan oleh bentuk (segi empat) dan ukuran yang tetap, yakni sekitar (80 m - 100 m).

4. Tekstur
Tekstur adalah frekwensi perubahan rona pada citra. Ada juga yang mengatakan bahwa tekstur adalah
pengulangan pada rona kelompok objek yang terlalu kecil untuk dibedakan secara individual. Tekstur dinyatakan dengan: kasar, halus, dan sedang Misalnya: Hutan bertekstur kasar, belukar bertekstur sedang dan semak bertekstur halus.

5. Pola
Pola atau susunan keruangan merupakan ciri yang menandai bagi banyak objek bentukan manusia dan bagi
beberapa objek alamiah. Contoh: Pola aliran sungai menandai struktur geologis. Pola aliran trelis menandai
struktur lipatan. Permukiman transmigrasi dikenali dengan pola yang teratur, yaitu ukuran rumah dan jaraknya
seragam, dan selalu menghadap ke jalan. Kebun karet, kebun kelapa, kebun kopi mudah dibedakan dari hutan atau vegetasi lainnya dengan polanya yang teratur, yaitu dari pola serta jarak tanamnya.

6 Bayangan
Bayangan bersifat menyembunyikan detail atau objek yang berada di daerah gelap. Meskipun demikian,
bayangan juga dapat merupakan kunci pengenalan yang penting bagi beberapa objek yang justru dengan adanya bayangan menjadi lebih jelas. Contoh: Lereng terjal tampak lebih jelas dengan adanya bayangan, begitu juga cerobong asap dan menara, tampak lebih jelas dengan adanya bayangan. Foto-foto yang sangat condong biasanya memperlihatkan bayangan objek yang tergambar dengan jelas, sedangkan pada foto tegak hal ini tidak terlalu mencolok, terutama jika pengambilan gambarnya dilakukan pada tengah hari.

7. Situs
Situs adalah letak suatu objek terhadap objek lain di sekitarnya. Misalnya permukiman pada umumnya
memanjang pada pinggir beting pantai, tanggul alam atau sepanjang tepi jalan. Juga persawahan, banyak terdapat di daerah dataran rendah, dan sebagainya.

8. Asosiasi
Asosiasi adalah keterkaitan antara objek yang satu dengan objek yang lainnya. Contoh: Stasiun kereta api
berasosiasi dengan jalan kereta api yang jumlahnya lebih dari satu (bercabang).
9. Konvergensi Bukti
Konvergensi bukti ialah penggunaan beberapa unsur interpretasi citra sehingga lingkupnya menjadi
semakin menyempit ke arah satu kesimpulan tertentu. Contoh: Tumbuhan dengan tajuk seperti bintang pada citra, menunjukkan pohon palem. Bila ditambah unsur interpretasi lain, seperti situsnya di tanah becek dan berair payau, maka tumbuhan palma tersebut adalah sagu.

Iklan Bawah Artikel